View Live Example
See heat map charts in action with interactive examples
Overview
Heat maps are perfect for visualizing 2D data patterns where color intensity represents value magnitude. Cristalyse heat maps support customizable color schemes (viacolorGradient), interactive tooltips, and responsive layouts for effective data exploration.
API Note: Heat maps use
.mappingHeatMap() instead of .mapping(), and color gradients are specified via the colorGradient parameter in .geomHeatMap(). If no colorGradient is specified, the default GradientColorScale.heatMap() gradient (dark blue → cyan → lime green → bright red) is automatically applied.Basic Heat Map
Create a simple heat map to show data density:Business Performance Heat Map
Monitor regional sales performance across months:System Monitoring Heat Map
Visualize server response times across hours and services:Correlation Matrix Heat Map
Display statistical correlations with diverging color scheme:Styling Options
Color Gradients
Define custom color schemes for different data types:Cell Styling
Customize cell appearance and borders:Value Text Styling
Control value text appearance:Data Handling
Missing Values
Handle null or missing data points:Value Ranges
Set explicit minimum and maximum values:Value Formatting
Customize how values are displayed:Interactive Features
Hover Effects
Add rich tooltips on cell hover:Click Handlers
React to cell selection:Animation Options
Fade In Animation
Cells appear with smooth fade transition:Staggered Animation
Each cell animates with a slight delay:Best Practices
When to Use Heat Maps
Good for:- 2D categorical data visualization
- Correlation matrices
- Time-based patterns (hour vs day)
- Geographic data on grids
- Performance monitoring dashboards
- Continuous spatial data
- Data with more than 20x20 cells
- Precise value comparison
- Single-dimension data
Design Tips
- Use intuitive color schemes (cool to warm for intensity)
- Ensure sufficient color contrast for accessibility
- Limit grid size to maintain readability
- Consider showing values for precise reading
- Use diverging colors for data with meaningful zero point
Performance Considerations
- Optimize for datasets with < 400 cells (20x20)
- Use simpler styling for large grids
- Consider data aggregation for very large datasets
- Test color schemes for colorblind accessibility